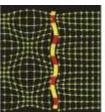
Werkstoffe in der Industrie 4.0 als Erfolgsfaktor für Ressourceneffizienz

Materials as a success factor for resource efficiency under the Industry 4.0

HMI Forum TechTransfer "Materials Data Space® – Werkstoffstrategie für Industrie 4.0"

Dr.-Ing. Robert Ilg, Fraunhofer-Institut für Bauphysik IBP, Abt. GaBi Daniel Wehner M.Sc., Fraunhofer-Institut für Bauphysik IBP, Abt. GaBi


Hannover 26.04.2017

Agenda

- Ressourceneffizienz
- Werkstoffe im Kontext von Industrie 4.0
- Wohin geht die Reise?

Ressourceneffizienz durch Industrie 4.0

Definition Industrie 4.0 (Plattform Industrie 4.0)

Der Begriff Industrie 4.0 steht für die vierte industrielle Revolution, einer neuen Stufe der Organisation und Steuerung der gesamten Wertschöpfungskette über den Lebenszyklus von Produkten.

- [...] Basis ist die Verfügbarkeit aller relevanten Informationen in Echtzeit
 [...] sowie die Fähigkeit, aus den Daten den zu jedem Zeitpunkt optimalen Wertschöpfungsfluss abzuleiten.
- [...] dynamische, echtzeitoptimierte und selbst organisierende, unternehmensübergreifende Wertschöpfungsnetzwerke, die sich nach unterschiedlichen Kriterien wie bspw. Kosten, Verfügbarkeit und Ressourcenverbrauch optimieren lassen.

⇒ Benötigt automatische Ökobilanz in Echtzeit

Ressourceneffizienz messbar machen

Lebenszyklusbasierte Prozesskettenanalyse

Umwelt (LCA): Sozioökonomie (LCWE): Ökonomie (LCC): Ressourcenbedarf Regionale Wertschöpfung Kostenstrukturen Lebens-Primärenergiebedarf Arbeitszeit **Prozesskette** zyklus-Treibhauspotential Qualifikationsniveau Energiekostensensitivität analyse Etc. Etc. Wirkung Erdölgewinnung Wiederverwertung Energie-/ und Recycling Stromproduktion Kohleabbau Energie-Massen und Vor- und rückgewinnung Zwischenprodukt Produktion der Nutzen/ Energiebilanz Technisches I Eisenerz-Dienstleistung Endprodukte förderuna Produktion von Entsorgung System Halbzeugen Mineralbergbau Ressourcen Stoffliche und energetische Ressourcen, Land, Wasser, Ressourcen Kosten, Wertschöpfung, Bildung, Arbeitszeit, etc. Produktionsphase **End-of-Life-Phase** Lebenszyklusphasen Nutzungsphase Ouelle: FhG IBF

Ressourceneffizienz – was wollen wir damit erreichen?

■ Technische Eigenschaften und Design

- Gewichtsspezifische Eigenschaften (bei gleicher oder erhöhter Festigkeit, Steifigkeit)
- Gezielte Verstärkung, Lastpfade
- Gezielte Anisotropie
- Formanpassend (Textilien, Drapierfähigkeit für techn. Anwendung)

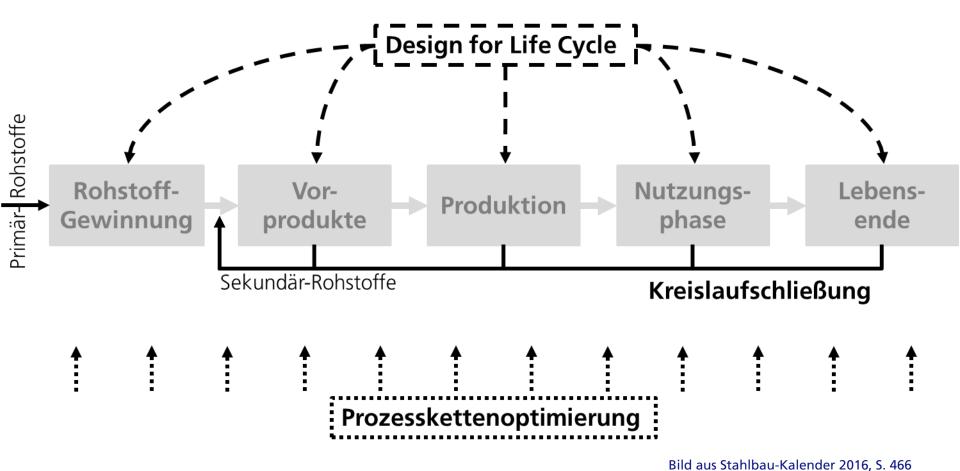
■ Ökonomische und ökologische Eigenschaften

- Materialreduktion durch gezielte Verwendung des Materials
- Verbrauchs- und Emissionsreduzierung durch Gewichtsreduzierung in der Nutzung
- Einsatz alternativer Rohstoffe

■ Bionische Ansätze

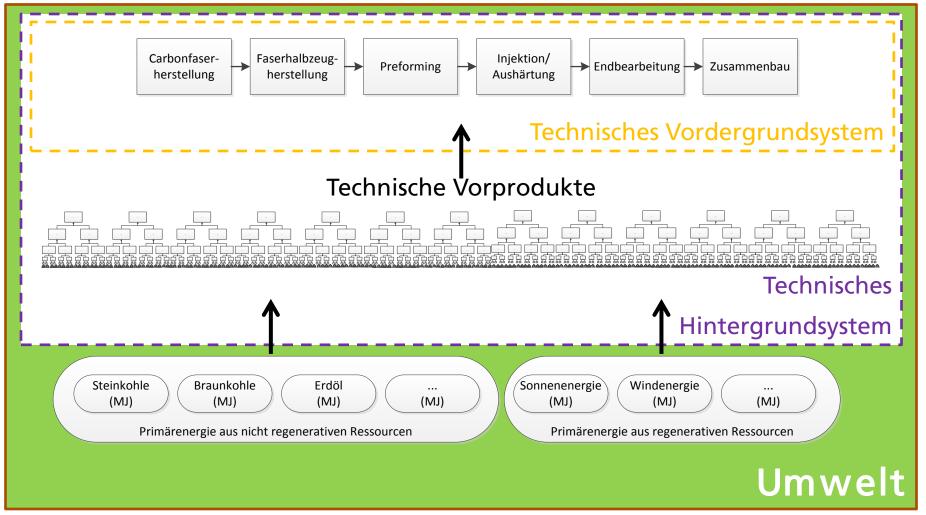
Leichtbau, Ultraleichtbau nach dem Vorbild natürlicher Leichtbaukonstruktionen

Ressourceneffizienz durch Prozesskettenanalyse Nutzen und Erfolg


- Technologische Entwicklungen und Anwendungen definieren den Nutzen des Einsatzes von Werkstoffen und Produktsystemen
- Die lebenszyklusbasierte Prozesskettenanalyse ermöglicht die Quantifizierung der Ressourceninanspruchnahme bezogen auf den definierten Nutzen des Einsatzes von Werkstoffen und Produktsystemen

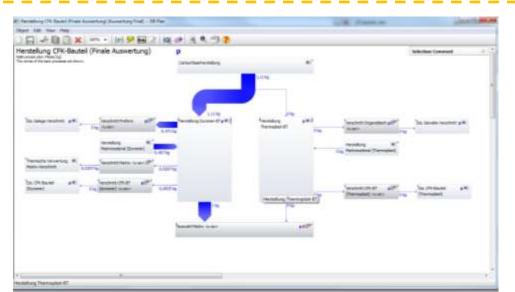
$$Erh\ddot{o}hung~der~Ressourceneffizienz = \frac{erweiterter~Nutzen}{optimierter~Ressourceneinsatz}$$

- Die Ressourceneffizienz kann durch die Erkenntnisse der Prozesskettenanalyse effizient analysiert und verbessert werden
- Ökonomische und ökologische Verbesserungen können gleichzeitig erreicht werden



Anwendung: Ressourceneffizienz im Lebenszyklus Verbesserungsansätze

Bilanzierung von Produktsystemen



Quelle: FhG IBP

Bilanzierung von Produktsystemen

Erstellung eines Stoffund Energieflussmodells

=

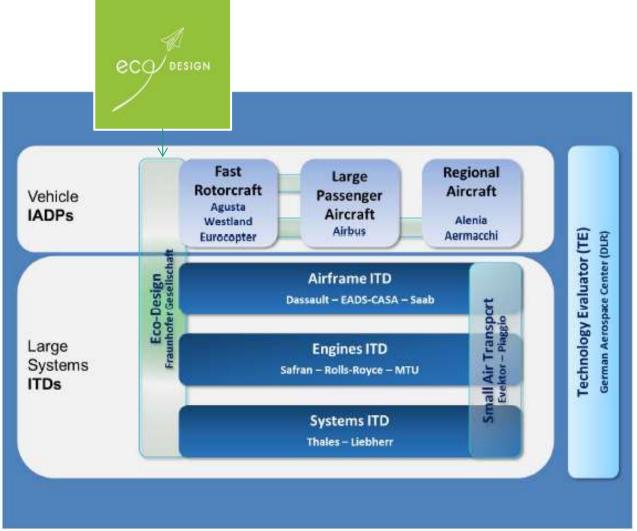
Prozessmodell

Technisches Vordergrundsystem

GaBi-Datenbanksystem

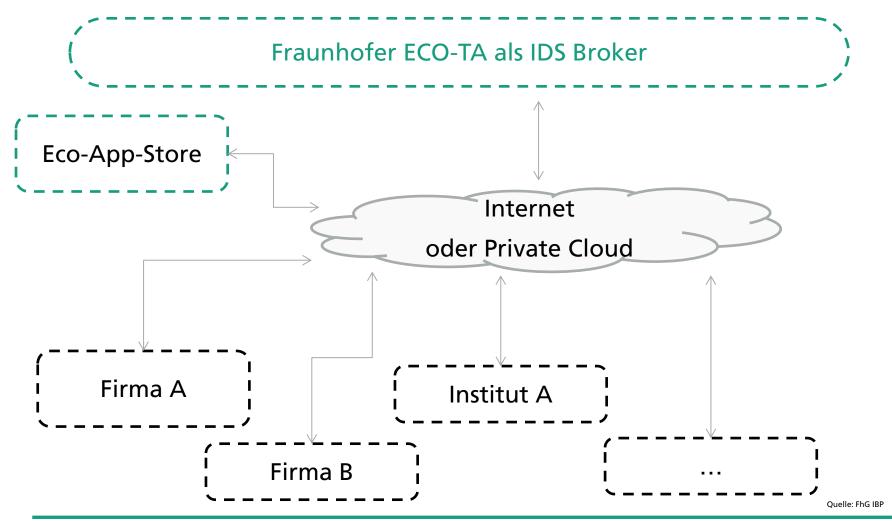
The state of the state

Abbildung der
Herstellung technischer
Vorprodukte durch
Zuweisung von
Datensätzen


Technisches Hintergrundsystem

Aus der Umwelt entnommene Primärenergie zur Herstellung eines technischen Vorprodukts

Projekt CLEAN SKY II – Eco-Design als zentrales Element



FhG Eco-TA: Koordinierte Vernetzung für nachhaltige Flugzeugdesigns

Starkes Team für große Herausforderungen

- FhG Material & Industrial Data Space
- Leitprojekte: z.B. Clean Sky, E³-Produktion
- ...

PLM

Product Lifecycle Management

- Führender globaler Provider von PLM-Lösungen
- Integrative Daten-Management Lösungen

Abteilung
Ganzheitliche Bilanzierung

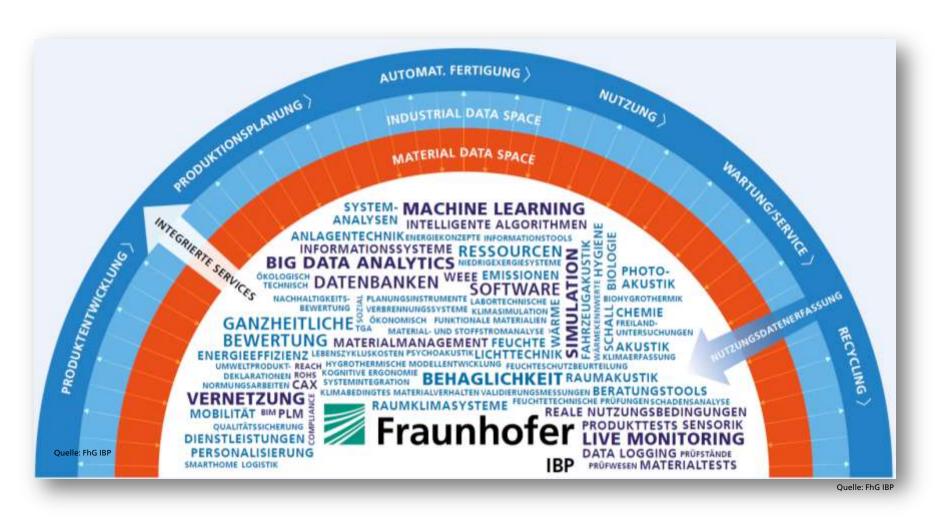
thinkstep

- Nachhaltigkeitsforschung
- Methodenentwicklung
- Funktionelles Software-Design

- Software Entwicklung und Vertrieb im Bereich Nachhaltigkeit
- thinkstep.one Software Plattform
- 300+ Experten in 14 Ländern

thinkstep **GaBi**

- Leistungsstarkes LCA und Reporting System
- Nachhaltigkeitsdatenbank mit >15.000 Datensätzen
- 2000+ Kunden, inkl. 40 % der Fortune 500 Unternehmen


- Öko-Design Tool für Flugzeugentwickler
- Echtzeit-Feedback durch Cloud-Computing und Automatisierung
- SUSTAINIA 100 Solution

Werkstoffe in der Industrie 4.0 ...

... als Erfolgsfaktor für Ressourceneffizienz

Kontakt

Dr. Robert Ilg Chief Engineer

Abteilung Ganzheitliche Bilanzierung, Fraunhofer IBP Tel: +49(0)711-970 3162 robert.ilg@ibp.fraunhofer.de

Daniel Wehner M. Sc.

Abteilung Ganzheitliche Bilanzierung, Fraunhofer IBP Tel: +49(0)711-970 3167 daniel.wehner@ibp.fraunhofer.de

Abteilung Ganzheitliche Bilanzierung Fraunhofer-Institut für Bauphysik IBP Wankelstraße 5 70563 Stuttgart Germany

Fax: +49(0)711-970 3190 www.ibp.fraunhofer.de

